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I
I.1

SIGNIFICANCE AND EXPLANATION

Spline approximation is often most effective when the breakpoint (knot)

sequence can be chosen suitably non-uniform. At the same time, the standard

approximation schemes (such as least squares approximation, or interpolation

at suitable interpolation points by splines) are so far only known to be

usable and bounded as long as the breakpoint sequence is almost uniform. The

problem of showing existence and uniqueness of bounded spline approximants to

bounded data boils down to showing invertibility of a certain infinite

matrix A . The distinguished feature of this matrix is its total positivity,

i.e., all minors of A are nonnegative. In this paper we show that if the

range of an infinite totally positive (more generally sign regular) matrix

A contains the particular sequence (*'*,-1,1,-1,1,-,,.) , then every

bounded sequence is contained in the range of A. In spline terms, this

result says, for example, that any bounded data sequence can be interpolated

with a bounded spline (with a given knot sequence, at a given interpolation

point sequence) provided that the periodic data {+I,-i} can be interpolated

by a bounded spline from that class. Our arguments show that such an

interpolating spline can be 'constructed' as a limit point of splines which

satisfy finitely many of the given interpolation conditions provided that the

trivial data can be interpolated only by the zero spline.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



Inverses of infinite sign regular matrices

by C. de Boor, S. Friedland and A. Pinkus

0. Introduction. If the problem of spline interpolation is expressed in terms of

B-splines, then the question of existence of a bounded spline interpolant to bounded data

is seen to be equivalent to the question of whether a certain bounded band matrix has all

bounded sequences in its range. In [4], C. A. Micchelli conjectured that there exists a

unique bounded spline interpolant (of a given order and a given knot sequence) to any data

sequence (Ti,yi)iez  in the plane, with (T i) strictly increasing and (yi) bounded,

provided only that it is possible to interpolate the particular data sequence

( (-1) 1 )ieZ by such a spline. There is apparently nothing special about the particular

spline problem other than that it leads to a banded totally positive matrix. Therefore one

of us quoted this conjecture in [2;p.319, Problem 4] as

"A biinfinite banded totally positive matrix A is boundedly invertible if and

only if the linear system Ax = ((-I)i) has a bounded solution."

In hindsight, it is easy to see that this conjecture is faulty even in the original context

of spline interpolation. For example, interpolation by bounded broken lines with breakpoint

sequence Z at the sequence T = Z {0} is possible to any bounded ordinate sequence y

but not uniquely so since the value of the interpolant at 0 is freely choosable. In ma-

trix terms, this corresponds to the matrix obtained from the biinfinite identity matrix by

dropping one row. But, with the condition changed to "... has a unique bounded solution",

the conjecture was proved in [I].

The argument in (1] establishes that, under the given condition, A "has a main dia-

gonal", i.e., some diagonal of A has the property that all finite sections of A having

a portion of this diagonal as their main diagonal are invertible, with their inverse bound-

) Actually, one of the editors, enlightened by [1], changed it to "a unique
bounded solution" as the book went to press.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041



ed uniformly. A-1 is obtained as the pointwise limit of these inverses. Thus, the argument

establishes more than Micchelli's conjecture. In reaction to a presentation of these argu-

ments, one of us sugggested that there might be simpler ways to establish the conjecture

directly. In particular, it should be possible, because of the checkerboard nature of in-

verses of totally positive matrices, to establish that A is onto under the original

condition, using minimal solutions of finite sections of the given linear system Ay - v

The present paper carries out this program in Section 1. As it turns out, it is pos-

sible (i) to drop any kind of structure assumption on A such as bandedness, and, less

surprising, (ii) the assumption of total positivity can be relaxed to sign regularity.

Having settled this matter, it then became of interest to see how much more informat-

ion about the inverse of a totally positive matrix could be obtained by this approach.

Specifically, assuming A- 1 to exist, and with D the diagonal matrix having alternately

I and -1 on its diagonal, could (i) the sign regularity of DA-ID be established,

(ii) DA-1 D or its negative be shown to be totally positive if A is, (iii) A-1  be

approached by inverses of finite sections of A ?

As to the third question, we show, as a simple corollary to the development in Section

1, that A- 1  can indeed be approached pointwise by inverses of certain submatrices of A

(involving consecutive columns of A but not necessarily consecutive rows), provided the

columns of A are already in co  and not just bounded. We believe this assumption to be

unnecessary in case A is totally positive, in the sense that we believe the columns of a

totally positive 2 -invertible matrix to be already in co . But we have not been able to

prove this. In any case, while this result is far from establishing that such A has a

main diagonal, it does allow the conclusion that DA-1 D or its negative is totally

positive in case A is.

As to the first two questions, we show in Section 2 by a completely different line of

reasoning that DA-1 D must again be sign regular. From this, a surprisingly simple argu-

ment proves the total positivity of DA-1 D in case A is totally positive and infinite

but not biinfinite.

We will use the following notations and conventions.

*2
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We use lower case letters to denote elements of R, i.e., real functions (or, se-

quences) on some integer interval I , with v(i) the i-th entry, or value at i , of the

sequence v . By S'(v) we mean the number of strong sign changes in the sequence v

i.e.,

S (v) :- sup ( r : there exist J <  . < Jr+ s.t. V(j )v(j ) 0 }
r+ 8+1

while

S (v) :- sup ( S-(w) : w(i) - v(i) whenever v(i) $ 0 1

denotes the weak sign changes of v If J is a subset of I , then vj denotes the

restriction of v to J while v\J is shorthand for the restriction of v to I\ J

i.e., to the complement of J in I . If J con'ets of just one point, J - {jJ say,

then we write \j instead of \{jl . Also,

Jv[(i) :- v(i)J, all i ,

while, if also u e R1 , then

u v e u(i)v(i)

Correspondingly, when also J is an integer interval, then A* denotes the transpose

of the matrix A e R I×J and AK,L denotes the restriction of A to the subset KXL of

IXJ . Such a matrix A is sign regular (-: SR) provided that for each k-1,2,3,... all

minors of A of order k have the same sign. If this sign is positive for all k , then

A is totally positive (-: TP). We denote the minor of A obtained from rows p < ... < q

and columns r < ... < s by

A(
P 

..... ql

1. Existence of a bounded right inverse in some absolute norm.

Let J be a finite, infinite or biinfinite integer interval and let S C R' be a

normed linear space of real functions on J , i.e., a space of sequences. We assume that

the norm is absolute, i.e., for every c e (-1,11 , s %- ((j)s(j)) is an isometry. We

further assume that the 'unit' sequences eJ , j e J , given by

e3 Ci) : 6ij, all i,j,

form a basis for S , i.e., the truncation projectr. PK given by

3



)  
" y(j) , j e K

0 otherwise

converges strongly to 1 as the finite interval K approaches J * Then the continuous

dual S of S can be identified with the sequence space

{f e RJ : |f| := su sesf s/Us < }

and the norm on S* is again absolute. In particular,

IfI Isl ( ifM Hsl , all f e s , e e S

Let A e RIxJ  for some finite, infinite or biinfinite integer intervals I and J

and assume that A(i, o ) e S , all i • Then we can identify A with the linear map

* I
S"- R : f -+ Af

We are interested in understanding the range of this map under the assumptibn that A is

SR.

Theorem 1. Let I, J be finite, infinite or biinfinite integer intervals, and let

S C RJ  be a normed linear space with absolute norm and with (en)jJ as a basis. If

A e R x  is SR, has its rows in S , and carries some x e s* to the strictly

alternating sequence u Ax , then the range of A contains the Banach space

Su  {v e RI : |V u := sup ieIlv(i)/u(i)l < - }

More explicitly, for every v e Su  there exists yv e s so that Ayv = v and

Ny I < lvi lxiV u

Proof. We first consider the case that I is finite. Since S-(u) = II1-1 , we claim

that A has full rank III and is therefore onto. Indeed, by induction, we may assume

that A has rank at least III-1 . If now rank A = III-1 , then there would be, up to

scalar multiples, a unique z e RI \{O) for which z*A - 0 * Then the sign regularity of

A would imply that z must alternate, i.e., z(i)z(i+1) 4 0 , all i • Therefore 0 = z Ax

- z u , and strict alternation of u would then imply that z = 0 , a contradiction.I!
It follows that every v e RI  gives rise to a linear functional Fv defined on the

finite-dimensional linear space

4
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I

R :- span(Aci,.)) ie

by the rule

E aiA(i,-) j- - a v

In view of the Hahn-Banach Theorem, we can therefore conclude the existence of yv e s*

with Ayv - v and ly I lv ulxi once we prove that

IF 1 4 IvI IxI
v u

It is sufficient to consider only finite J . For, an infinite J can always be

approached by finite intervals K , and

A(i,-) = limk JPKA(i,.) , all i

by assumption. Therefore, for all sufficiently large intervals K , the rule

a aiP,,A(i,.) t-+ a v

defines a linear functional F on RK :- PK[R] and lim K - FV "
vv V

Let yV e S be a norm preserving extension of Fv to all of S * Then

F v(r) y r
IV FI - sup -i---

lyl - IFI -sup r suplr- = sup inf Ytr
reR reR reR Ay-v In

jy1*jrj yv I Irl

4 sup inf Il < sup < ly v I
reR Ay-v IER

with the third inequality holding since the norm on S is absolute and the second since

Ayv - v * Now there is no restriction in assuming that, for each J • J , we can find

r e R with r(j) # 0 (since, in the contrary case, the entire column j of A would be

zero and we could simply omit the index from consideration). We therefore conclude from the

above string of inequalities that

IF I = sup inf lyl •vw
wew Ay-v

with

W t- (r e R : Irl f 1, r(j) 0 0 , all J}

and 1.1 the dual norm to 1-1 , i.e.,w w
IfI ,- Ifi Iwi

w

Sf . W



Now

sup lxi :up |Il* X
we w s fag

while
* •

inf Byi -. IFv I
Ay-v

is the norm of Fv  with respect to the 1.1 -norm. It is therefore sufficient to prove
w

that, for any positive weight function w

inf lyl 4 IxI IVl ,w w ui
Ayv

For this, let yu be an extreme point of the nonempty, closed, bounded, convex set
S* * *

C {y e S Ay - u , lyl . IFu 1w

We claim that K :- supp yu contains exactly III points. Indeed, if supp yu were to

contain a set L with ILl II1+1 , then we could find z e s*\ {0} with Az - 0 and

z = 0 . But then ly u+czi E y (j) + £z(j)lw(j) - y uI + e Z sign[y(j)]z(j)w(j)

for all sufficiently small positive or negative e , while A(Yu+eZ) - u , therefore, by

the minimality of lyuB , I sign[y(j)]z(j)w(j) - 0 and yu would not be an extreme point

of C . With this, (y uK is a solution of the system AI1 Ky = u , and our earlier

argument implies that AI,K is invertible, and, in particular, IKI = III . We therefore

conclude that

inf Byl * I(A IK k zk,i)v(i)l Iw(k)I
Ay-v wli (A1wke KCiv~f

4 IVI keK eI (AI -(k'i) Iu( i) Ilw(k)I

while

r I (AIK)-1[k,i)Iu(i)I lw(k)I - E kIEi(A,K)-1(k,i)ui)I Iw(k)I

uw 
w

by the sign regularity of A (which gives that (AI,K)- I must be checkerboard), the

alternation of u , and the minimality of yu

This establishes the existence of y e S with

6



Ay v - v and ly l ( vi lXi

for finite I * From this, we obtain the result for nonfinite I by considering all finite

L
integer intervals L contained in I . For each such L , we can find y v e s with

L L * *
Ay V = VL and flyv I ( IVLIuXli ( lViluXi

Therefore, for some increasing sequence (L) converging to I , the corresponding sequence
|x* **an

(y) converges weak* to some y e s * But then also ly A ( Ivi lx and

L • v(i) ,i e L

(Ayv)(i) - yVA(i,o) - limL.I(yv) ALJ(i,) - limL I Lund efviie

As a special case, consider the SR matrix A e RIx J  to carry X,(J) to 1.(I) . Its

rows must then be in .1(J) , a sequence space with absolute norm and (e3) as a basis.

At the same time, Su . t.(I) provided u alternates uniformly, i.e., u(i)u(i+1) < 0

all i , and inf Iu(i)I > 0 . We therefore have the following

Corollary 1. If I and J are finite, infinite or biinfinite integer intervals and

A e RIXJ  carries £_(J) to P (I) in such a way that, for some x e . (J) , u :- Ax

uniformly alternates, then A is onto.

Remark. This corollary establishes the full generalization of Micchelli's conjecture.

The theorem even shows that the solution y of Ay - v may be chosen bounded in terms

of v , i.e., lyl ( kivi with k :- supi,jx(i)/u(j)l independent of v , and also

demonstrates all this without the assumption that A is 1-1.

As a second special case, consider the SR matrix A e RIxJ  to have all its rows in S

- c0 (J), another sequence space with absolute norm and (e) as a basis. Then

1i * -1 I - .I with e(j) - I , all j , i.e., we are in the special situation to
1 e

which we reduced the proof of the theorem. We now know from that proof that we can choose,

for each finite interval L in I , a subset K of J with IKI " ILl so that

I(AL,K )
1
uL1 " min {ly 1  Ay u on L }

7



Then we extend (AL,K)- to C
L e RJ xl  

by taking its values to be zero off KxL . For

each i e I , ei is in Su o The above argument therefore shows that

1CL e I lxi 1
le

i = xII /Iu(i)I

We can therefore choose a sequence (L) and a corresponding sequence (K) so that, for

each i , CLe
i 

converges weak* to some yi e £ (J) . This means that

for all a e c 0(J) , limL I aC e a y

and so in particular

e (r) ieL

for all r , (Ayi (r) lim A(CP'ei (r) = im= e (r)
L+I L I 0 ,ijL)

This shows that the matrix C given by C(J,i) := yi(j), all (j,i) e JxI , is the

pointwise limit of the sequence (CL) It is a right inverse of A and it satisfies

1C(,,i)1 1 I 1 cU/Iu(i)I, all i

This proves

Corollary 2. Let I and J be finite, infinite or biinfinite integer intervals. If

A e R
Ixj  

is SR, has its rows in c0 (J) , and carries some x e LI (J) to the strictly

alternating sequence u := Ax , then there exists a sequence (L) of index intervals

converging to I and a corresponding sequence (K) of index sets so that (AL,K)I

exists and converges pointwise to a matrix C e 
J XI 

which carries Su  to X£1i(I) and

satisfies AC - 1 (as maps, hence as matrices).

2. The inverse of a SR matrix. In this section, we assume that the SR matrix

A e R
I
x
j  

is also 1-1, as a map on X , in addition to having a uniformly alternating

sequence in its range. We then know that A is 1-1 and onto, hence invertible, with A
-
1

again (representable as) a matrix, from RJXI , which carries £ (I) onto (J).

Let now D
I e R'x ' be the diagonal matrix whose diagonal entries are alternately 1

and -1 . Specifically,

(D
I
y(i = (-)iy(i) , all i e I, all y e R

,V !



if I is an interval (as we assume). It is well known that, for finite I and J , the

matrix DJA D is again SR. In addition, if A is TP, then DJA-D' or its negative is

also TP. We prove the first statement for arbitrary I and J , and prove the second

statement under the additional assumption that the columns of A are in co or else

that I equals J and is not biinfinite, i.e., has a first or last entry.

Proposition 1. If A e R'
xJ  

maps X.(J) to . (I) and is 1-1 and onto, and maps

c0 (J) to c0 (I) , then A TP implies that DJA-
1
DI or its negative is TP.

Proof. We know from Corollary 2 to Theorem 1 that, under the given assumptions,

A
-1  

is the pointwise limit of certain matrices (CL)* as the index interval L converges

to I . The matrix C
L  

equals (AK,L)- = (AL,K*)-I on KxL and vanishes off KxL

Here L is an interval, but K is only an index set, K = {k1 ,...,kl , say, with

k1 < ... < kr  o For such K , we define the diagonal matrix D
K 

by

iy) K
D= (-) y(ki) , i=I....r, all yeSR

Then DL(AK,L )-D
K  

is TP since AK,L iS. Now every i in I must eventually be in all

K's since in the contrary case the i-th row of (CL)
* 

would be zero for infinitely many

L , hence A- (i,
,
) = 0 , which is nonsense. Thus, for any finite intervals M and N

(A-IM,N is the pointwise limit of 1AL)MN as L + I, with eMNDM(A KLMND
N  

TP

for some cM,N e (-1,11 . This implies that cM,N  is independent of M and N , and so

DM(A-l)M,NDN or its negative is TP. But since M and N are arbitrary finite intervals,

this implies that DJA-
1
D
I 

or its negative is TP. II

We believe the assumption that A map c0 (J) to c0 (I) to be unnecessary for the

conclusion that DJA-
1
D
I 

or its negative is TP. More precisely, we conjecture that a

2. -invertible TP matrix A e R
IxJ  

must map c0 (J) to c0 (I) . Without this assumption,

we have no way of approximating A
-1  

by inverses of certain finite submatrices of A , and

will have to prove by some other means that DJA-
1 
D
I 

is SR in case A is SR.

9
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Theorem 2. Let I , J be finite, infinite or biinfinite intervals. If A e R' j is

SR and invertible as a map from X(J) to 1_(I) , then DJA-'D1  is also SR.

Proof. In outline, the proof is as follows. By well known results, it is sufficient

to prove that DJA-1 DI is variation diminishing, i.e.,

S-(DA--D z) S(z) , all z

and this is equivalent to the assertion that

u - Ax implies S-(DJx) < S-(Diu)

This, in turn, follows by a smoothing argument from the assertion that

u = Ax and u, x nowhere zero implies S+ (Dlx) < S+(DIu)

and, finally, this last statement follows, as we will show, from the assertion that

u = Ax and u nowhere zero implies x vanishes at most S+ (Diu) times.

We begin the detailed argument with a proof of this last assertion and for this start

with the following

Leta 1. If B e RIxJ is 1-I, then BI,J j is still 1-1 but not onto.

Proof. Since B is 1-1, the sequence B(.,j) cannot be in the range of BIj\j

hence Bi,J\ j is not onto. On the other hand, if B,j\jx = BI,j. , then, extending x

and y to all of J by setting them equal to 0 at j gives Bx = By , hence

x y .111

Corollary. f u := Ax uniformly alternates, then x vanishes nowhere.

Proof. If x were to vanish at j , then the SR matrix A1 ,j j would carry the

bounded sequence x\j to the uniformly alternating sequence u and Corollary I to Theorem

1 would give that AI,J\j is onto, while A is 1-1 by assumption, hence A Ij\j is not

onto by the Lemma.III

10



Next, we strengthen this corollary as follows.

Proposition 2. Suppose u = Ax satisfies infilu(i)l > 0 and S+(Diu) - k , while

= 0 for some L with ILI = k • Let K : e I : u(i)u(i+l) > 01 . Then, the

matrix C := A\K,\L is again SR 1-1 and onto.

Proof. Since u never vanishes and S (Diu) - k , therefore IKI - k and the

subsequence u\K of u alternates uniformly. In addition, CX\L - u\K and C is SR.

Therefore C is onto by Corollary I to Theorem 1.

To prove that C is 1-1, let Cz 0 for some z e X.(\L) , and extend z to

z e X_(J) by zL = 0 . Set y :- Az * Then y\K - 0.

Since C is onto, we can find, for each j e L , a bounded solution x to the

problem

x= 0 , Ax
J  

Ae
3 

off XXL  ,

with e3(i) := ij , all i,j, as before. Set

F:R
L 

- f(I) j- I a.(e3 - x
j )

jeL3

Then Fa = a on L while Aft = -jea(Aej - Ax ) vanishes off K • Therefore,

AFa - 0 on K implies AFa - 0 and so, A being 1-1, we get Fa - 0 and, in

particular, a = (Fa)L - 0 . This shows that

RL RK:a t-+ (AFa)K

is 1-1, hence onto since ILl - IKI

it follows that we can choose a so that AFa - y on K • But then z' : z - Fa

satisfies

AZ' - yAa - y on " 0
0 - 0 off K J

and so, A being 1-1, we have z' - 0 , therefore 0 = z' - 0 - a , i.e , a 0 and so,

finally, z XL (- Fa)\L z =0 •l jL

11



Remark. The argument just given shows the following general fact: If the linear map

B is 1-1 and can be partitioned as

B B i
B i  

B 121

L k21 B22

in such a way that B1 1 is onto while B2 2 is square of finite order k , then B1 1  is

also 1-1.

Corollary. If u - Axe t (I) with infilu(i)l > 0 and S+(DIu) = k , then x has

at most k zero entries.

Proof. Let xL = 0 for some L with ILI = k . Setting again

K : i e I : u(i)u(i+1) > 0) , we know from Proposition 2 that C : A,\L is 1-1,

while it obviously carries X\L to the uniformly alternating sequence u", and is SR.

Therefore, by the Corollary to Lemma 1, x does not vanish off L .111

Lamma 2. If u = Ax with infilu(I > 0 and S+(DIu) k , then S+(Dix) e k

Proof. We first show that we may assume that x vanishes nowhere. For, if this is not

the case, then we replace each zero entry of x by e or -e in such a way that the

resulting sequence xc satisfies S +(DJ x C S+(Dx) This changes u = Ax to

u: Ax = u + v with Iv| 4 IAIuId • But since infilu(i)l > 0 , we can choose e > 0

so small that again inf iu (i)l > 0 , while S+(DI u ) 
= S+(D Iu)

Next we produce a SR 1-1 onto matrix C and a sequence z with as many zeros as

Dix has sign changes and with Cz = u . For this, consider the matrix Ei(a) which

differs from the identity only in that it has an a in position (i+1,i) . This matrix is

TP for nonnegative a and carries the sequence z to itself except that the (i+1)st entry

is changed to z(i+1) + az(i) . Consequently, Ei(a) is invertible, with Ei(-a) its

inverse.

12



* Now let ri x(i+1)/x(i) If x(i)x(i+1) > 0 , then ri > 0 and y :- Ei(-ri)x

equals x except for a zero in entry i+1 . Hence, if iI < ... < in are all in

K {i £ I: x(i)x(i+1) > 01 , then the matrix

B :=Ei I-ri ... E1 n C-ri

carries x to a sequence which vanishes at i1+I, ... , in+1 , while

B_ Ei (r n ) E i(r
n n1 1

is TP, 1-1 and onto, hence AB 1 is again SR, 1-1 and onto. Since AB- CBx) - u we now

conclude from the Corollary to Proposition 2 that n 4 k . This proves the lemma in view of

the fact that S+(DJx) - IKI , since x vanishes nowhere. III

Imma 3. If Ax u , then S-(DJx) 4 S(DIu).

Proof. There is nothing to prove unless S-(DIu) < In that case, we choose

sign[u(i)] e [-1,11 in such a way that S+(DY(signtu(o)])) = SC(DIu) and then set

Ci) signiu~i)] if Iu(i)I < C

I u(i) otherwise

Then S +(DI u E S(DI u) and so, using the boundedness of A-

S-(D x) 4 lim S +(D (A-Iu)) I S+(DI u E S-(D Iu)

by L 2. I1

With this, the proof of Theorem 2 is apparent. For we now conclude from Lemma 3 that

S-(DJA-Dlz) 4 S-(z) , all z , and therefore every finite submatrix of DJA-1 D1  is

variation-diminishing. Hence, by Karlin [3;p.222], DJA_1 DI is SR. I

Corollary. If I - J is only infinite (and not biinfinite), then A TP implies

DA- D TP.

Proof. Assume without loss that I {1,2,3,.... and consider the matrix B e RKx K

13



with K := {O}UI and

A

Since A is TP and invertible, so is B , with
1 0

B1 0 A 1)

-1A-

Further, both DK-'DK and DIA-D I are SR, by Theorem 2. For k -0,1,2,..., let Ck

denote the common sign of the kxk minors of DKB-lDK , hence of DIA-'D I . Then, for

any k ,

DKB-,DKC(0.::: k - DIA-,DI(, 1 .....:k0, ,k- 1,. .k

and, since these minors are nonzero, we conlude that c - k , all k , therefore

S- CO  1 ,all k. II

14



References

11) C. de Boor, The inverse of a totally positive biinfinite band matrix, MRC TSR 2155

(1990).

(21 R. DeVore and K. Scherer oe., Quantitative Approximation, Academic Press, 1980.

[3] S. Karlin, Total Positivit, Stanford, 1968.

141 C. A. hicchelli, Infinite spline interpolation, in Approximation in Theorie und

Praxis, Emn Symposiumsbericht, G. !einardus ad., Bibliographieches Institut,

Mannheim, 1979, 209-238.



SECURITY CLASSIFICATION OP7 THIS PAGE rWht.n Data Entered)

-7 READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2GOVT ACCESSION N,# 3. RECIPIENT'S CATALOG NUMBER

2159 ~)41 /0 44
4. TITLE (mid Subrtae) S. TYPE OF REPORT & PERIOD COVERED

INVESESOF IFINTE IGN EGUAR MTRIES&Summary Report - no specific
INVESESOF IFINTE SGN EGULR MTRICS Dreporting period

G. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(g) -S. CONTRACT OR GRANT NUMBER(*)

;C. Ide Boor, S.-/FriedandSO~A./Pinkus LDAAG29- 80-C-90 41

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AE OKUI UBR

610 Walnut Street Wisconsin 3 - Numerical Analysis
Madison, Wisconsin 53706

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

U . S. Army Research Office Deceber 1990
P.O. Box 12 211I NUMBER OF PAGIES j -

Research Triangle Park, North Carolina 27709 15 /
-4. MONITORING AGENICY NAME Ik ADDRESS(If different bow. Controling Office) IS. SECURITY CLASS. (of tIimeort)

9 r /iiK~j )7' -h. ~v'UNCLASSIFIED
IS.DECLASSIFICATION/DOWNGRAOING

SCHEDULE

1S. DiSTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, It different fromt Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continlue on revoee &Ode Ji necessary and Identify by black numnber)

Biinfinite, infinite, matrix, total positivity, sign regularity, inverse

20. *STRtACT (Continue en rev'erse side It n.eesay and identify by block numnber)

entries alte)~tl 1 and -1. In case A is totally positive (TP) , then

1D.A-'T - is also TP under additional assumptions on A

DD FOP 1473 COITION OF I NOV 06 5 SODSOLEE N.SIRD <jr g')

SECURITY CLASSIFICATION OF THIS PAGE (Whsm Doge .......




